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AERONAUTIGS

THE l~LIMITIiTGliINEnIN MIXED SUBSONICAND

SUPERSONICFLOW OF COW?RESSIBLEI’LUIDS

By Hsue-shenTsien

It is well known that the vorticityfor any fluid element
is constant if the fluid is non-viscousand the change of
state of the fluid is ise~trapico When a solid body is placed
in a uniform stream, the flow far ahead of the body is irrot~
tional, Then if the flow is further assumed to be isentropic,
the vorticitywill be zero over the whole field.of flowt “-In
other words, the flow is irrotational. 11’orsuch flow ovor a
solid body, it is shown by l?heodorsen(referenceZ) that tho
solid body experiencesno resistance, If the fluid has a
small viscosity,its effect will be limited in the boundary
layer over the solid body and the body will have a drag due
to the skin frictions This type of essentiallyisentropicir-
rotationalflow.is generallyobservedfor a streamlinedbod:y-
placed in a uniform streamr if the velocity of the stream is
kept below’tho s~cnlled l!criticalspeed.~1

At the critical speed or rather at a certain value of the
ratio of the velocity of the undisturbedflow and the corre-
spondingvelocity of sound, shock waves appear, This phonome--
non is called the IlcomprbssibiLityburble.It Along a shock
wave, tho change of state of the fluid is no longer isentropic,
although still ad$abatica This results in an increasein en-

—

..

-.
,.’

tropy of the fluid and generallyIntroducesvo~%i.aity”In An ‘—-”-“’1:
originallyirrotationalflow. The increase in entropy of the
fluid iS, of course, the consequenceof changingpar-tof the
mechanicalenergy into heat energy- In other wordsz tho part ‘“
of fluid affected by the shock WQVO has a reduced mechanical
onorgye !l?hcrefore,with tho appearanceof shock waves, the
wake of the streamlinebody is very much widened, and tho
drag incroasosiirasticallyaI?urthermore,the accompanying
change in the pressure distributionover the body changes t~e
aerodynamicmoment acting on it and in the case of an airfoil

-.

decreases the lift forae. —
—.

RESTRIOTZD . ..=.-e
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All these consequencesof the breakdownof isentropic
irrotationalflow are generallyundesirablein applied aer%
dynamics. Its occurrenceshould be delayedas much as possi- ‘
ble by modifyingthe shape or contour of the bod.~s However,
such endeavorwill be very much facilitatedif the cause or
the criterionfor the breakdowncan be found fi~st,

●

CRITERION3’ORTHE BREAKDOWNOF

ISENTROPICIRROTATIONALFLOW

!l!aylorand Sharman (reference2) calculatedthe succes-
sive approximationsto the flow around an airfoil by means of
an electrolytictank- They found that when the maximumveloc-
ity in the flow reaches the local velocity of sound, the con-
vergence of the successivesteps seems to break down. !This
fact led to the identificationof criticalspeed or critical
Mach numberwith the.Mach number of the undisturbedflow for
which the local velocityat some point reaches the local vel-
ocity of sound. However,there is no mathematicalproof for
tho coincidenceof the criticalMach number so defined and
the breakdownof isentropicirrotationalflow, R’urthormore,
such a definitionfor criticalMach number impliesthat a
transitionfrom a velocity loss than that of sound, or eub-
sonic velocity,to a velocity greater than that of sound, or
supersonicvelocity,doos not occur in isentropicirrotational
flow* On the other hand, Taylor (reference3) and others
found solutionsfor which such a transitionOCCUZW. Further–
more, Binnie and Hooker (reference4) have shown that at
least for the case of spiral flow the method of successive
approximationis a convergentone even for supersonicvel-
ocities. With these facts in mind, i-tmay be concludedthat
the identificationof critical speed with local supersonic
7eIocitycannot be correct.

Taylor~s investigationon the spiral flow (reference3)
indicatesthat there is a line in the f-lowfield Where the

4“ maximum velocity is reached and beyond which the flow cannot ~
continue. Tollmien.ina subsequentpaper (reference5) called

~: such lines limiting lines, The velocity at the ltm~tingline
is never subsonic. However, the truo characteristicsof such
limitinglines and their significancewere not investigated
by Tollmienat that time, ~ecently”Ringleb (reference6) ob-
tained anotherparticular solutionof isentropicirrotational
flow in which the maximum velocity reached is approximately

\
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twice the 10CQ1 sound velocity; For this flow also a limit+
ing lino appearedbeyond which the flow cannot con%inuoo
Furthermore,he found the singular characterof the limiting
line, that is, i~fin,iteaccelerationand infinitepressure
gradient. Von Karman (reference?, particularlypp. 351-356)
demonstratedthis fact for tho general two--dimensionalflows
He also suggestedthat the limitingline is the envelopeof
the Mach ~iaves(fig. 1) anU thus can occur only in a super-
sonic regione Qe also took its appearancea~”thq criteri~n
for breakdownof isentropicirrotationalflow, This general
two-dimensionaltheory was establishedlater by both Ringleb
(reference8) and Tollmien (reference9), Tollmien corrected
some mistakes in Ringloblspaper and, in addition, showed
that the flow definitelycannot continuebeyond the limiting
line, !L?helater fact introduceda ~lforhiddenregloni!in the
flow bounded by the limitingli.neO Thisphys.icalabsurdity - –
can be avoided only by relaxing the condition of irro~lon-
ality. But, as statedpreviously*for non-viscousfiiids$
the transitionfrom a flow without vorticityto that with
*,.orticitYc- be accomplishedonly lIYshock wavesj whfch at
the same time also cause an increase in the entropy,

However,before it can be concludedthat the appearance
of a limitingline, or the envelope of Mach waves, is the
general conditionfor breakdownof is.entropicirrotational
flow, it must he proved that the singularbehavior of limit-
ing lines is general and not limited to,two-dimensionalflow. ‘“
This is the purpose of the present papers ~~rst”’theprop”or-fy
of limitingline in axially symmetricflow will be investigated
in detail, !Chenthe goner~l three-dimensionalproblciiiwtll he
sketch,ed.~These investigationsconfirmthe results‘;?RIn~lebz
Von Karman, and Tollmienfor these more general cases,

Therefore,by consideringonly the .~tead~flow of non-
2Z&LQ.Q3L&fluids, the criterionfor breakdownof isentropic
irrotationalflow is the appearanceof a limitingline. I’or
tha actual motion of a solid body, however,the flow is neithe;
steadynor non-viscous- Small disturbancesalways occur and
almost all reaL fluids have appreciableviscosity, The small
disturbancesin the flow introducethe questionof stability,
In other words,.the solutionfound for isentropicirrotational
flOw may be unstable even before the appearance of the limit-
ing line, and tends to transformitself into a rotationalflow
invcslvingshock waves at the slightestdisturbance. If this
is the case, the criterioncopcerns not t“helimitingl$nel b“ut”
the st~biiitylimit- -Thisprdblen has yet to be solved.

.

-.

.
. -+----
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The effect of viscositywill be limited to the boundary
“* layer if the pressure along the surface in the flow direction

never increasestoo rapidly, !l?henoutsidetho boundary layer
the flow is iseritropicand irrotationala If the gradient of
pressure is too large, the boundary layer will separatefrom.

, the surfaces Eowever, at low velocitiessuch separationonly
widens the wake of the body and changesthe pressure distri-
bution ovor the body. But if the %oundarylayer separates

7 at a point where the velocity outsidethe boundarylayer is
supersonic,additionaleffectsmay appear. The flow outside
the boundary“layerin this case can be regardedapproximately
as that of a solid body not of the originalcontour but of a
ncw contour includingthe lldeadwater”~lregion created by tho
soparatione It is then immediatelyclear that the ideal
isotropic irrotatlonalflow around this new contour may havo
a limitingline. Henc6, the actual flow then must involve
shockwo.ves. In other words, the separr.tionof the boundary
layer in tho supersonicregion may induce a shock wave and
thus extend its influencefar beyond the region of separation-
I’urthermore,the steep advensepressure gradientacross a
shock wave may accentuatethe separation, This interaction”-
hctween the separationand the shock wave is frequentlyob-
served in experimoptso

*.

*

l?heabove considerationsindicatethe possibilityof
the breakdownof isentropicirrotatfonalflow outside the
boundarylayer even before the appearanceof the limiting
li.nao !!?here?ore$the Mach number of the undisturbedflow
at which the limitingline appears may be called the Uupper
criticalMnch number,lr On the other hand, since chock wmvcs
can occur only in supersonicflow, the Mach numbOr of the ~n_
disturbedflow at which the local velocityreaches the vQloc-
ity of sound may be called the IllowercriticalMach numberol!
The actual criticalMach number for the appearanceof shock
waves and the compressibilityburble must lie befween these
two lirilitseBy carefullydes.dgningthe contour of the body ~ ,3
to avoid the crowding together of Mach waves to form an i?nvc-
lope and to eliminateadverde pressure gradientsalong the
surface of the body,

)’
the compressibilityburble can be delziy~d,.

AXIALLY SYMMETRIC3’LOW

The solutionof the exact differentialequationsfor an
axially symmetricisentropicirrotationalflow was firstgiven ._
by Frankle (reference10)Q The method was developed independ-

.

.—
..— __._-. .
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ently by I?errari(reference11)0 Their method appliespar-
ticularlyto the case of supersonicflow ove~ a body of
revolutionwith pointed nose- In this case, the flow at
the nose.can be approximatedby the well-known’solution
for a conoa From this solution,the differentialequation
is solved step by step, using the net of characteristics
which are real for supersonicvelocities. In the following
investigation,the chief concern is not the solution of the
partial differentialequation%ut rather the occurrenceand
the propertiesof the limitingline’in an isentropicirrota-
tional flow. The generalplan of attack is that of !l?ollmien
(reference9). However,here the calculationis based on
the Legendretransformationof velocitypotential instead of
the streamfunction.

If q is the magnitudeof the velocitys a the corre-
spondingvelocity of sound assumingan isentropicprocess,
P the pressure,and p the density of fluid, the Bernoiilli
equationgives

P-.
(
1

P. = “ %$)h= (’ + ? $?)& ‘1)

Zf=l y-z qa
(

2 -1
Y-I ~

CLoz
-=--=s l+—

2 a. 2 az)
(2)

In those equations,the subscript o denotes quantities
correspondingto = o, and 4 is the ratio of specific
bents of tho fluidaq Let the axis of symmetrybe the =axis,
the distancenormal to x-axis he denoted by y, and the
velocity components.along these two directionsbe denoted
by u and v, respectively(fig. 2). The X:Y ‘plane3s,‘; -
theroforo,a meridianplane. Then the kinematicalrelatioris
of the flow are given %y the vorticityequation c

v~ - Uy =o*- (4)
——-—---—-—-_ ———- ——

*Throughoutthis paper
iv
partiaz deriv~~s are denoted

by subscripts, Thus Vxaw, Uy=au
~

---
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and the continuityequation L

%-(’~”)+$w:’)=o(5)
Equations (1) to (5), togetherwith the relation q2= U2+ V2,
specifythe flow completely.

To simplifythe problem, a-velocitypotential Q defiaed
as follows is introduced -

u = Qxt

Then equation(4) is identically

v= Vy (6)
!’.

satisfiedand equation(5),
togeth~rwith equations(1) and-(2), gives the equation’for cp,

/
. .-

(+)’=-2%XY‘(+)QY,’$=” ,(,,
The characteristicsof this differentialequation,to be
calletlthe characteristicsin the physicalplane, are given
by g (x, Y) = ~, where ~ (x, Y) is determinedby the
followingequation

It can be easily seen from this equation that g is real
only when q>a. Therefore$ the characteristicsare real
only in supersonicregions of the flow.

..— _

The meaning of characteristicsin the physicalplane is
immediatelyclear if one calculatesthe relation %etween the
slope of a characteristicand the slope of a stream line in
the meridian or x-y plane, By the definitionof the function
g(x,Y), tho value of g is zero, or constant,.along a char-
acteristic. Therefore,by writing a quantityevaluatedat a
certainconstantvalue of a parameterwith that parameteras
a subscript,the slope of tho charaoteristlcin the physical -
plane is

— —.
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dy() gx
=.—Gg ey

Along a streamline,the stream function ~ defined by
followingequationsis constant:

Theroforo,the slope of a streamlineis

()& v=-?
dx$ U

Equations(8), (9), and (11) give

‘?

(9)

(lo)

(11)

/————
4a_1

()
dy -:+~@

— —.
Txg=— ‘-,% ,’tan ?+’(%). ‘“” ‘} ’12)‘( )

1
Uz‘

.—
a~

where ~ is the Maoh angle given by ~= sin-l~. Therefore$
equation(12) shows that the characteristicsin the physical
plane are inclined*O the streamlinesby an angle equal to
the Mach angle, Such lines are the wave fronts of i.nflnitcs-
imal disturbancesand are called Mach waves. In other words?
characteristi.osin physicalplanes are the Mach waves in
that plane. There are two families of Mach waves inclined
symmetricallywith respeot to each streamiinea

If to each pair of values of u and v, there Is S=
pair of vr.luesOf x, Y, then x and y can be considered
as functionsof u, v- In other words, instead of taking
x and y as independentvariables u, v can be used as in-
dependentvr.riables,The plane with u and v as coordinates
is called the ~!hodographplaneo$ An equation in tho hodogro.ph
plane correspondingto equation (?) oan be obtainedby means
of Legendretstransformation- By writing

.- —



b
~=ux+l?y -q)

XU=X, X=Yv

Then cqua.tion(7) can %e written as

8

(13) ‘

(14)

‘(’-:)xuu+’~[xuuxvv-x.:l=” “5)
Zhe characteristicsof equation (15) are given by f(u,v)= o
where f is the solutionof the followingdifferentialequa-
tion

‘{(’-$)+<%)’:=” ‘“)
Equation (1.6)shows that the characteristicsin the hodograph
plane depend upon the values of the derivativesof X which
must be obtainedfrom equation (15), In other words, tho
characteristicsin the hodographplane change with the flow
and arc not m constantset of curves as are those in two-
dimensional problems.

To obtain the relationbetween the characteristicsin
the physicalplane and those in the hodographplane, it is -

—

noticed that equation (9) can be rewrittenas .

(dy)g $ (dx)g = - gx ; gy
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Then equation(6} is equivalentto

G-5)(dy’:+’5(’y).’dx’.+(’-5)’’x~.2=o“8’
However, in general, equation (14) gives the following
relationbetween the differentialsof x and y and those
of u and v;

.

dx=Xuudu i-X~T dv

dy=&vdu+~vdv
(19)

By means of these relations,equation(18) can be transformed
into an quation for (du) and (dv) . This transformed
equation can be simplifi~dby using ~quation (15)~ The final
relationis

● Therefore,if the first factor of equation (20) is not zero,
the variations (du)g and (dv)g along a characteristicin
physicalplane must satisfythe relation

(21)



.

10

This is tha same rslationfor the variations (&u)f andh
(dv)f along a characteristicin the hodographplane as can
he seen from equation (16) and the followingrelation ob
tained from the definitionof f —.

(dv)f : (du)f =- fu : fv (223
●

The transformedcharacteristicsof the physicalplane and
the characteristicsof the hodographplane themselvessatisfy
then the same first order differentialequationc Therefore,‘“
these two types of curves are the same. in other words, the
characteristicsof the hodographplane are the representation
of Mach waves in the u-v pla~ee ; .-

.-

TEE LIMITINGLIIJE

.

@

Zquation (20) shows that if

(2Z)

#
then the transformeddifferentialequationfor the character–
istics of the physical plane, or Mach waves, is sa$isfieda
~horeforc,if there is a line in the hodographplane along
which the valuee of the derivativesof % are such that
equation (23) is true, then this line when transferredto
the physicalplane will have its slope equel to that of one

t family of Mach waves. Such lines are called *he lirnIi71fig
hodograph in u-v plane and the limiting line in physical
planee Since Mach waves occur on~y in the supersonicregions. it Is then evident that tho limitingline must “appeti&-”in
these regio~s. The significanceof the adjective ~~imi.tingll
will be made clear as other propertiesof”such lines nre
investigatcd~

P How the questionarises: Can the limitinghodograph
be a characteristicin wv plane? Along a limitinghodc-

‘ graph, equation(23) gives
‘a .

e-)v kuu XJvv“ 2 %lP %Uv + %72 %T= -— (24)
‘1 xullvXVv - 2 XUv %l?w + &lu %77
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where the subscript 1 denotesthe value along a limiting
hodograph. Now the generaldifferentialequationfor Xl

.

equation (15), is true for the whole u- v plane: there –
fore; the equation is still true by differentiatingit with
respect to u and V* The results can be simplifiedby
using equation(Z5) itselfand equation (23)0 Then at the

. limitinghodograph,

[P-5)’tx’’1x’uu+2 [%-%xu’]x”uv+[(’-$)

Equations (24), (25a), and (25b) are the only av;ilable
equationsinvo~vingno higher derivativethan the third, On
the other hand, the slope of a characteristicin the hod-
graph plane can be calculatedby equation (22),

(d)dv fu— =r———
‘f fv

!l?hisequationtogetherwith equation(16) gives

(26)

Therefore,if the limitinghodograph is a characteristic,then
@J
()du

must satisfy oquatiori(27), Howevor, a simple calcul-
1

—
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tion shows that it is not even possible to obtain a relation
between

()
~P and other quantitiesnot involvingthe third-
du \ —

order derivativesof X.
()

Hence, ~ does not satisfy
du t

equation (27). In other words, the limitinghodographis
not a characteristic. Transferredto the physicalplane,
this means that the limitingline is not a Mach wave. l?ut
as shown in previous paragraphs,the limitingline is .eFer5-
where tangentto one family of Mach waves, Consequently,the
limitingline must be the ertvelopeof a family of Mach waves-
This property of the limitingline can he taken as its physical
definitions

LIMITINGHODOGRAPHAND THE STREAMLINES

At the limitinghodographboth equations(15) and (23)
holdc By eliminatingone of the second-orderderivatives,
say Xuu, the followingrelation is obtained —

.—
Uv 1~+ =- 1.—

aa(x+==—— (x~v)l (28)

1 u’.—
asa

The sign before the radical in equation(28) can be either
positive or negative,but not both. T%fs relationwill be
used presentlyto show that the streamlinesand one famiI.y
of characteristicsare tangent in the u-v plane-

From equation (10), the differentialof the stream
function can be calculatedas

d$=- Y~ vdx+y~u’dy (29)
P. P.

In this equation, y can”be replacedby Xv according to
equation(14) and the differentials dx —.and . replaced
by the differential du
Then

and dv accordingtod%qu5tion(19).
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do = Xv f-
[( )(
-Vxuu+uxuv du+ )1-vXuv+u?&vdv (30)

o

Along a streamline, d~ = 0; thereforothe slope of the stream-
‘ line in tho hodographplane is given by

At the limitinghodograph,equation (23) holds; therefore~
equation(31) togetherwith equation (28) gives

(32)

where the sign before the radical oan be either negative or
positive correspondingto the sign in equation (28)0

On the other band, the slope of the characteristicsin
the hodographplane 3s determinedby equation(27)s By

solving for
()

e
du f and simplifyingthe reeult with the

aid of equation (15)0
——

(33)

The sign before the radical is eitherpositive or negative
correspondingto the two familiesof characteristics, By
using the positive sign in conjunctionwith the positive sign
in equation (28), and similarlyfor the negative sign,

(34)
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Equations(32) and (34) show that the streamlinesand one
t family of characteristi~sare tangentto each other at the

limitinghodographe ghis result is the same as that o=
tained for two-dimensionalflow- (See references7, 8, and

. 9.) Those equationswhen comparedwith equation (12) for
the S1OPC of Mach waves in the physicalplane yields the
intercstiingresult that the streamlinesand one family of

● characteristicsat the limitinghodographare perpendicular
to the correspondingMach waves at the limitingline.

Since —.

(35)

Equation (32) gives the followingequationwhich holds at
the limitinghodograph

. ()1 ,()-q “(*U)l’+2 ~ (Wu)t (Wv)t+ -2-$
a

(ifv)%z= O (36)

This equationcan be reduced to more familiar form by intr~
● ducing the polar coordinatesin the &v plane:

.

u= q cos ~, v = q sin 6

where e is the angle between the velocityvector and u-axise
Then equation(36) takes the form

i

*
(37)

This can be regardedas the equivalentof equation(23) for
definingthe limitinghodograph. A similarrelation exists
for two+dirnensio,nalflow. (See references7, 8, and 9.)

&
Along a streamlinesthe ratio between (dv)~ and

“’ (du)~ is gi?ronby equation(31)0 By substitutingthis
● ratio in equation(19)$ the differential (dx)~ and

(dy)q/along a streamlineis given as .
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w
(rlx)~=

.

(dy)$ =

.

[.

a
Ux x-x

Uu Vv Uv1(au)* ,)

15

v% +u~
Uv Vv

[
“1

(38)
a~

v ?& XVv - XUv
J— (du)~

-Vxuv+u% J

At the lfnitingline, equation (23) is satisfied. Then equa-
tion (38) shows that a% the limitip line,

?)
the streamlinehas

a singularity. Or, more plainly$ dx ~ and (dy)~ at thesa

points are inf~nitesimalsof higher order than (du)$ and
(dv)~o BY writing s for the distance measured along a
streamline,equation (38) gives immediately,

-,
v XUv

(Us)$ = -L_ +Uxvv
●

[ 1

(39)

Q XUu x - xuv~.
VT

Similarly,

/ v XUu - u XUv
& ● (+?JW =

l-”
1

(40)

L
q Xuu Xvv - XUV8-

Therefore,at the limitingiine, the accelerationalong a
streamlineis infinitf31ylarge. Furthermore,since the
pressuregradient (PJy along a streamlineis

L
the pressure gradientat the limiting line is also infinitely
large,

\\



Such infiniteaccelerationand pressuregradientleadL one to suspectthat the fluid is thrown back at the limiting
line- In othorwords, the streamlinesare doubled back at
this line of singularity. To investigatewhether this is

. *m.lQ,tho characterof the relation %u%-%lva’o
along a streamlinehae to be determined- If the derivative
of this oxpresslonalong a streamlineis not zero, then

●

xullXvv - X/ has only a sinple zero at tho intersection
of the limitingline and the streamline. Consequently,the
differentials (dx)W and (dy)~ will change sign by passinc
through the limitinghodoguaph in -v
li~eo Hcnoe,

p~ane along a stream-
the streamlineswill double back and form a

cusp at the 1im3tingline. The derivativeof I&U xv. -Xlma
along the streamlinecan be calculatedwith the aid of equa-
tion (30)

[
&“ x -x 2,

1
=XUuu x - 2 XuvXUuv + XQu XUvv

Uu VT UP .t Vv

v ~uu ‘u %+
{
%UQ %- 2 ‘UV %V’V+ ‘UU %VV

}
(42)—-. —

Uv+u.xvvVx

The expressionon the right of equation (42) cannot be reduced
to zero by the availablerelr.tions,which consist of equation
(23), equation(15), and differentiatedforms of equation (1!5).
Thc~efore,the expressionconcernedgenerallyhas only a simple
zero at the limitinghodo.graphand the streamlinesare doubled

L back at the limiting line, It will be shown later that there
is no solutionpossible beyond the limltingline. Hence, the
name limitingline,*

ENVELOPE OF CHARACTERISTICSIN HODOGRA2HPLA.NEAND .

LINES Or CONSTANTVELOCITY IN PHYSICAL PLANE
.

Sinco the limitingline is the envelopeof the Mach waves
i in the physicalplane? ~t is interestingto see whether there

is also an envelope for the characteristicsIn the hodograph
plane. The characteristicsin the WV plane are determined
by equation(~6)c The envelope to them can be found by elim-

tncjt ing dv
()

Tetween equation (26) and the followingequation
Z f
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b f’f -%
a )+:x.v}(=)f-{~.:x+o (43)

.

which is obtainedby equating to zero the partial derlvativo

of equ~tion(26) with respect to
(d)
~ The result can be

u f“
simpliffodby equation f15),

1 U2+ V2
- —a~

This is satisfiedby either

or
z

u+

and then it %ocom”essimply

U2V2 uaT2
+— =—

(44) .

a4 a’

a= o (45).

2 2v=a (46) “

Tho first condition$equation(45), when substitutedinto
equation (26) gives

dv
()

u
= f,~.o

=--
v (47} ‘

which shcuvsthat the circle of maximum velocity correspond-
ing to a = O, Is the envelope of the characteristicsin hod-
graph planoo The second condition,equation(46), is the
spurioussolution,sinco generallythe characteristicat
~=~ is not a tazngentto the circle q = a. Hence a=ob is the only envelopo, .

!Tholines of constantvelocity in the hodographplane
are simply circles. Therefore

0C& u=---
u
q,v

(48)
L

By means of this relation and equation (29), the slo~e of the
lines of constantvelocity is given as

dy
()

v XUv - u Xn=
Zq

v % -U%lv
(49)

—

1r .



●

b

.

t

XACA TN ~~0.961 18

This equationtogetherwith equation(30) gives the following
interestingrelation

—.— --

c)_Y 1=.— (50)
x

()
J&

~ au *

In other words, a line of constantvelocity in the physical
plane is perpendicularto the streamlinein the hodograph
plane at the correspondingpoints.

T= LOST SOLUTION

Throughoutthe previous calculation,the possibilityof
using the Legendre transformatio~is assumed. This requires
that for each pair of values of u, v there is one and
only one pair of values of x, y, However$ it is not al-
ways txuos It is possi%le to have a number of points in
the physicalplene having the same value of u and V* If
this is the case, then evidentlyit is impossibleto solve
for x and y from the pair of functions U6U (X,y),
v= ~ (X,Y). Mathematically$the situationis expressedby
saying that the Jacobian a(u,v)/a(X,y) vanishes in the
physicalplane- Or

Uxvy-uyvx=o (51)

However, this is also the conditionfor a functionalrelation
between u and v; for example, v can be expressedas a
function of u. In other words, u and v are nat independ-
ent- Hence if a solution is ~lostl!or not includedin the
family of solutionsallowing Legendretransformation,then for
that solution,

T = v(u) (52)

It is seen that equation (51) is then identicallysatisfied.,

BY eliminating p from the continuityequation,there
is obt~~ned



●

✎

-.

b

.

.

NACA TN NO* 961 19

This equationcan be rewrittenin the followingform by using
equation(52)

The vorticityequation, equation (4),can be expressedas

av_u o
au x Y= (55)

. ..-

From equations(54) and (55), it is possible to solve for
‘x and %“ The result is

(56a)

[[+ -2
5:+(’-5).&)’] u~=-; : ‘“b)

BY differentiatingthe first of equation (56) with respect
to Y* the second with respect to x, the followingrela-
tion is obtainedby subtraction:

or

Therefore

dv = f(y) - x—
du Y

f(y) - x
Y=—”

dv
du

(57)

(58)

whero f(y) is an undeterminedfunction of y, However,
equation(55) shows that for lines of constantvalues of u
where du = Ux (dx}u + uy (d3’)u= “,
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G)Y 1s . — w constant
Xu dv

()TU ~

(59)

.

Hencn~ lines of constantvalues of u ,and v are straight
lines. l?hisrestrictionreduces the function f(y) in

● equation(58) to a numericalconstant. Put f(y)=K, equa- ,
tfon (58)is then

K-x
Y=—

a
(50)

du

Thereforelines ox constantvalue of u and v are radial
lines paseing through the point X=KC Thus the lost sol%
tion is nothing but tilewell-knownsolutionfor the f~ow
over a nonical surface- —

From equation(59), it is seen that lines of constant.
velocityare perpondicqlarto the tangent of the u-v curve
at the correspondingpoints. By substitutingthe value of
*

b $ from equation(!57)into equation(56a)~ a relationbetween

u and v is obtained.;

.
This is the differentialequationfor determiningthe hodograph
representingthe flow over a cone. Figure 3 shows the hodograph

● for a cone 0$ 30° semivortexanglo and with a velocity at thti
surface of cone equal to 0.35 c. !I!hemaximum velocity is c“–
that is$ the value of correspondingto a = O. I?igure3
3s drawn from data give: by Taylor and Maccoll (reference12).

1% may well he mentionedhere that the lost solutionforA the axially symmetricflow is not limitad to supersonicveloc-
ity as Is the ease for two-dimensionalflow. In fact, Taylor
and Maccoll show that for emall forwardvelocity of the cone,*
supersonicvelocitiesoccur only just after the head shock
wave, The velocitydecreasesas the surfaco of the cone is
approached Finally, it becomes subsonicfor points near the
surface of the cone- l%gure 4 shows a few examplestaken from
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.

b

.

*

their calculations(reference12), The dotted curves in the
figure are the Mach waves. The dotted straightlines are
the boundaries%etween the supersonicand the subsonicregions.
E’urthermore,spark photographsof a conica~ shell in actual
flight taken by Maccoll (reference13) do not ind~ca%ethe
presence of-shockwaves in regions of flow where such transi-
tion from supersonicto subsonicvelocitiesis expected.

—

Thereforosat least for this particulartype of ~low, a
smooth transitionthrough sonic velocity actuallytakes
place,

CONTINUATION03’SOLUTIONBEYOND THE LIMITINGLINE

Since it is shown in a previousparagraphthat the
streamlinesare generallyturned back at the limitingline,
the questionarise”s~ Is it possiblo to continuethe solution
beyond the limitingline? Of course, there are two ways Gf
continuingthe solution: The now solutionis joined either
smoothlyto the given soltitionat the lim~%ingline or with
a discontinuity. As shown before, the limiting line is the
envolopoof one family of the Mach waves- Then at every

..

point of this line its directiondiffersfrom that of the
streamlineby an angle equal to the Mach angles But the
Mach angle is not zero except at points where the velocity
of fluid has reached the maximum velocityand the ratio
~=o

● Therefore,the limiting line generallydoes not
~
coincid.owith the streamline,and the discontinuityat the
junctionof the solutioaat the linitingline cannot be that
of a vortex sheet, Tho only other type of discontinuityis
the shock wave- However, the angle between the limitingline
and the flow direction is equal to the Mach angle. Then ac-
cordingto the result of the theory of shock waves,“thedis-
continuityacross such a line vanishes, In other words,
there cannot be a discontinuityat the limitingline. There-
fore, it is impossibleto Join a new solutiona% the limit-
ing line with a discontinuity.

As to the secondpossibilityof joininga new solution
smoothlyat the limitingline, it is seen that the flow beyond
the limitingline must be irrotationaland isentropicsince
tho limitingline ca~not be a shock wave? There are only two
types of isentropicirrotationalflow; namely, one that allows
tho Legcndretransformation,and one that does not+ the ~lost
solution.II Investigatethesecond alternativefirst. If the



. .eolution beyond the limitingline belongs to the so-called
lost solution,then since the junctionat the limiting line
must be snooth,the values of u and v at the limiting
line must also satisfy equation(61)* But the slope.
dv
(d)
— at the limiting line is given by equation (24). The
UI

● (ia%rsecotidderivative
(d)

will then involvethe fourth
‘1u

order derivativesof %, Besides these expressions,the
availablerelationsare equations(15)$ (23), (25a)$ (25b),
and three more equationsobtainedby differentiatingequations
(25) ~~iihrespect to u and V. However,it is still impos-

(3)sihle for ~ to satisfy an equationlike equation(61)
Ua

where no derivativeof X appears, Hence, the limiting
hodographdoes not satisfythe equationfor the lost solu-
tion, In other words, the lost solutioncannot be used to
continue the flow beyond the limitingline.

.
The only remainingpossibilityis to continue the flo-w

smocthlyby another solution obt~inableby a Zegendretrans-
. formation, Smooth continuationmeans that the values of u,

‘J, and p must be the same at the junction,the limiting
line. Since shock waves do not appear, isentropicrelations
still hold. The density p is determinedby velocity only.
The value of u and v are determinedby the coordinates
in the hodographplane. The position of the limiting line
in the physicalplane is determinedby Xu, XVO Therefore,

. the problem can %e stated as follows; At a certain given -
curve u(h), V(A) in the hodographplane, the limiting
hodograph,the values of Au, xv are given; A iS the

. parameteralong the g$ven curve. It is requiredto deter-
mine a new solutionof the differentialequation(equation
(15)) with these initialvalues. I’frstof all, it is seen
that with the given data, the left-handsides of the follow-
ing equationsare given:

(62a)
.-

(62b)

——
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Thereforo.

.

(63A)

By substitutingthose values into equation (15), the second-
degree tarms reduce to -.

(64)

which iS line= iII ~v. Therefore ~v can be uniquely
. determinedby equation (15). In other words, with the given

data, the second order derivativesof X at the given curve
U(A), v(h) can be determineduniquely,in spite of the fact
that the Ltfferenti,alequation (15) is of second degrees
Friodrichsand Lewy (refercnco13) have shown that under
these circumstances,the function X within a region R
(figc 5) boundedby two characteristicsand the given curve
is uniquelydeterminedexcept for an additionalconstant,. Consequentlythere can be only one solutioncorrespondingto
the given data at the limitinghodograph, However, this sOlU-
tion is the very one which gives th~ reverse flow at limiting. lines Therefore,it is impossibleto continue the solution
beyond the limitingline oveu by a Legendr6transformation.

Since all three alternativesfail to offer a way of con-
tinuing the solution,the limitingline ia truly an impossible

4 boundary to cross, In other words, tho region beyond the
limitingline IS a forbiddenregion, This physical absur3ity
can be resolved only by the breakdown of isentropicirroin--

, tional flow.
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GENERAL THRE3W31MENSIONALE’LOW 8
.
#

!lhemethods used in previous section-sfor investigating
. the axially symmetricflow can be easily extendedto the

general thre~dimensional case, In the present section,this
investigationwill be sketchedbrlef~y and the results indi-

, cateda

Letthe three componentsof velocityalong the three
coordinateaxes x, y, and z be denotedby u, v, and
w, respectively. Then by introducinga velocitypotential

defined by’9,

u = Qxt ~ = Pys ~=Qz, (65)

*

the differentialequationfor q of an isentropicirrotational
flow can be written as ~referance 7) b

.

,

..

~’(~xx+~=y+Qzz) = ,
U2%JV29YY+Watpzz + 2~wQ=z+ 2w~ZX.+ 2uvqxy (66) ‘“

If, for every triad of u, v, w, there is only one triad
of x? z, then the Legendre transformationcan be
used. Tt:s

x= ‘UX + Ty + WZ -Q (67)

and

Xu = x, x.Q = Y, Xw=z (68)

The differentialequationfor q, equation (66), is then
transformedinto

2a.
[
BC-F2+ CA- Ga+AB_ E2

J
= Ua (BC4F2) + va (OA-Ga) “

(69)
+ W2 (AB= H2)+ 2VW (GE- AF)+ 2WU (HF- BG)+ 2uv(F&”cH)
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where the followingnotationsare used

25

A=xUU, 13=xvv, C=xww, F=xvw, ~=xwu, H = ~ (70)tlv

By analogywith the axially symmetriccase, the limit-
ing hodographsurface is defined as the surface in the u,
v, w space, or hodcfgraphspace, where the followingrela-
tion holds:

i
j AHG

A= HBF =0 “ , (71)

~ G3’C
I

The propertiesof this limitinghodographand the correspond-
.

ing limiting surface can be found %y consideringthe behavior “
of streamlinesand characteristicsat such sur~acess

From equation (68) the differentials0$ x,
can be written as

dx = A du+ H dv + G dw

dy = Hdu+Bdv+l?dw

dz = G du+ 3’dv + C dw

Along a streamline,the differentials dx. dye

Y, and z

(72a)

(72%)

(72c)

and dz must
be proportionalto- u, v, and w, respecti$;ly. Thus the
equationof a streamlinein physical space is

(dx}k (dy)v (dz)w
1= =— (73)u v w“

where the subscript $ indicatesvalues taken along the
streamlines The equation of a streamlinein hodograph space
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is obtainedby eliminating dx, dy and dz from equation
. (’73)hY equation(’72). The resu1t ~S

*

where ~ is the-co-factorof A in the determinant A of
equation (71), b the co-factorof B, and so forth. Equa-
tion (74) can be used, in turn, to eliminatetwo of the three
differentials du, dv, and dw in the right of equation
(72)o The result Is

UA du-(dx)W = ‘—
au +Zv + ~ w

(75a)

(75b)

(dz)$=
WA dw.

(75C)
;U+%+zw

A.tthe limitingsurfaoe, A = O as definedby equation(’71):
thereforethe streamlineshave a singularitythere.. Stmilar
to the axially symmetricflow, the streamlinesgenerallyare
turned back and form a cusp at this surface- The acceler>
tion and the pressura gradientare, of course, infinitely.
large at such places.

The characteristicsurface g(x,Y,z)= O in physical
space is determinedby the equation

2a
[
IsXa+ i%y

a

1
?+gz= .——

U2+3X2+ Vag a+w~gz 2+ 2vwgygz+ 2wwzgx+ mwxgy
Y (76)
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Since thfs equationis a second-degree equation,there are
two familiesof surfacespassingthrough each point. These
surfacesare the wave fronts of infinitesimaldisturbance-s
in the flow and can ‘becalled the Mach surfaces. The char-.
actoristicsurface f(u, v, w) = O in the hodographspace
is deterininedby the equation

a
[

a (B+C)fua+ (C+A)fv2+ (A+13)fw’- 21!’fufw- 2G fwfu= 2H fufv1
a

[
c fT2+13fw% 1[2F fvfw + V2 c fua ‘

2
=U +Afw -2G fw fu1

a

[

a z ‘Vi+’yw[+w Bfu +A fv -2H f f H fwfu+ G fufv .

- r fua-
‘f~fd+’wu[” : 1

H fvfw+r fufv- G f 2-3 fwfu

+ 2UV
[
Gfwfv+Ffwfu-Hfwa -Cfuf T1 (77)

By transformingequation(76) for Maoh surfaces to hodograph
space$ it can be shown that the transformedequation is
satisfiedeither by t%e characteristicsin hodograph space
determinedby equation (77) or by the limitinghodograph
determinedby equation (71)* Therefore,here again the

. limiting”surface is the envelope of a family of Mach surfacesO

3y using equations(74) and (77), it is ~ossible to show
. that the streamlinesin the hodographspace are tangent to

the characteristicsurfacesat the limiting hodograph, Fur-
thermore,by using equations(69)$ (71), and (74)$ the in-
clinationof the streamlinesat the limitinghodograph can
be calculated In fact, if (ds)a = (~U)2+ (dv)2+ (dw)ac
qa .=U2 +-172+ W2

s the following relation is obtained

ds() q=.- q
Tq or--

W,t a a (78)

This relation is really equivalentto equation (32). In
other words, at the limttinghodograph,the inclinationof
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the streamlinesand characteristicsto the q = constant
● surface is equal to the Mach angle (fig. 6). It thus seems

the breakdownof general steady isentropicirrotationalflow
of nonviscousfluid is connectedwith the appearanceof the

. envelopeof Mach waves in physical space and the tangency of
streamlinesand characteristicsin hodograph space.

,
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